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1 Introduction

Modeling of fracture of shales during drilling and hydraulic fracturing is a major
research area for gas and oil industries [1, 2, 3, 4].

Due to their laminate structure, shales exhibit an anisotropic mechanical
response which has been ignored for long time. Yet, recently there have been a
few attempts to develop and use orthotropic models for shales [5, 4].

The purpose of this report is to identify published rock material models and
properties that can help a petroleum engineer in his design of various strategies
for oil/gas recovery from shale rock formation. Drilling strategies may include
using explosives for fracturing rock and injection of proppants for maintainting
fractures open. During drilling, borehole stability is an important concern,
requiring an understanding of natural shale layered structure, elastic moduli,
strength, pore fluid pressure, mineral content, etc

To account for the layered shale structure, which can be on a very small scale,
an anisotropic model is necessary to calculate rock response to applied loading.
Where explosives are used to break up the rock, porosity and compaction need
to be modeled, and the model needs to be sensitive to relatively high strain rate.
Far away from the explosion site, the rock is subject to lower strain rates, so
that strain-rate sensitivity is not an issue.

A petroleum engineer has a variety of tools at his disposal in developing
his strategy. These tools include measuring rock properties (logging) at vari-
ous depths, extracting rock samples for laboratory measurements (e.g. triaxial
tests). To evaluate borehole stability, techniques may range, for example, from
calculating borehole collapse pressure using analytical models [6] to FEM codes
that incorporate constitutive models, such as [5]. Both types of techniques re-
quire validation with experimental data. The focus of this report will be mainly
on constitutive models (used in FEM codes) using parameters that can be cali-
brated to rock tests, and a collection of available data for such tests. The Crook
model [5] has been identified as a complete anisotropic model that can be used
as a good starting point.

In this report, we review several approaches to modeling shale and then focus
on the implementation of a particular model (the Crook anisotropic model).

2 Models applied to blast loading

The first papers will illustrate capabilities and limitations of isotropic models
used to calculate rock behavior under explosive loading. Grady and Kipp in
[7], Kipp and Grady in [8], Kipp, Grady, Chen in [9] show good agreement
between experimental and analytical results finding that fracture stress and
energy increase with strain rate while fragment size decreases with strain rate,
using only isotropic damage models. However, Taylor, Chen, Kuszmaul in [10]
find that isotropic models with or without layering are only able to reproduce
the peak values of measured stress waves but not the release history.

Zhang, Hao, Lu in [11] argue that an anisotropic damage model is needed
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but their results for fracture stress and fragment size are just as good as those
obtained by Grady et al, in the previous papers, for the same data.

3 Models applied to triaxial tests

The next set of papers apply various anisotropic formulations to triaxial tests.
Nova [12] assumes linear transverse isotropic elasticity, with an anisotropic

yield, associative plastic flow, and strain-hardening, in an extended cam-clay
model, intended for soft rocks. While the model gives good agreement with
experiment for longitudinal stiffness, triaxial test simulations do not agree well
with experimental data. Specifically, the model gives poor agreement with ex-
periment for stress-difference (S1-S3) vs. strain.

Niandou et al [13] were able to correct this deficiency in Nova’s model by
allowing for non-associative flow (with a plastic potential distinct from the yield)
in order to match their Tournemire shale data [14].

Cazacu and Cristescu [15] developed a failure model, based on an anisotropic
Mises-Schleicher failure criterion, which agrees very well with Tournemire data
for the variation of failure stress with orientation and for various confining pres-
sures, where the orientation angle is defined for the principal stress system with
respect with the material symmetry structural system. They also present an
anisotropic model [2] in which they use extensive fitting to formulate elastic
parameters and a yield surface. The expression for the yield surface is initially
unknown and is fully determined from experimental data.

Tien [16] studies the failure stress of artificially layered material. He intro-
duces a failure criterion based on two modes of failure: sliding on a discontinuity
across material layers and failure within a single layer without sliding. Tien
identifies an anisotropy parameter n defined by:

n =
E

2G
− ν (1)

which is equal to 1 for isotropic material. E is Young’s modulus at 90 degrees
with respect to the intrinsic material frame and G and ν are the shear modulus
and Poisson’s ratio, in the same frame. For Martinsburg shale, he finds that this
parameter varies only from 3.5 to 4.6 over confining pressures ranging widely
from 3.5 MPa to 100 MPa. He obtains good agreement for the Tournemire data.

Pietruszczak et al[17] develops an intricate anisotropic model with microstruc-
ture without damage, which shows moderate agreement for stress difference vs.
volumetric strain for the Tournemire data.

Gao et al [18] present an anisotropic failure criterion, in which they introduce
a fabric tensor to achieve some success in the calculation of the friction angle,
giving clearly better results than an isotropic model. Their model does quite
well on Tournemire shale, predicting correctly the variation in shear strength
for various loading orientations. They provide a calibration procedure for the
parameters introduced in the failure criterion. Note that they do not present
the entire model, but only the failure criterion.
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Chen et al [19] also introduce a fabric tensor in their anisotropic damage
model, in which they couple plastic deformation with damage induced by growth
of microcracks. They also draw on the work of Pietruszczak in their formula-
tion. They obtain good agreement with their model on the Tournemire shale
data. This is an advanced model, allowing for the yield to depend on stress,
scalar measure of plastic strain, density of microcracks, and a scalar anisotropy
parameter, which represents the projection of a microstructure tensor on the
current loading direction.

Chen et al [20] discuss the coupling between inherent and induced anisotropy
in sedimentary rocks, using a fabric tensor to characterize anisotropic behav-
ior.They obtain good agreement on shear stress vs. strain for the Tournemire
shale data. This is also a very advanced model, which allows for friction coeffi-
cient and material cohesion for a family of weakness planes.

Hu et al [21] add the effect of water content to the anisotropic modeling.
They provide calibration of model parameters and show good agreement with
Tournemire argilite data for triaxial tests, except for volumetric strain vs. ax-
ial strain. Capillary pressure is introduced to describe the effect of the water
content, using the effective stress concept. The model represents random mi-
crocracks by several families of parallel penny-shaped microcracks. The overall
plastic strain is defined as an average weighted by microcrack density.

Lisjak et al [22] addresses brittle failure of anisotropic Opalinus Clay with
a transversely isotropic constitutive model. Model parameters are calibrated
with uniaxial compresive strength tests and Brazil disc tests.Their model shows
good agreement with experimental data for maximum principal failure stress vs.
confining pressure. With their FEM-DEM method, they are able to calculate
crack patterns for various orientations.
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Figure 1: Adjusting yield surface for anisotropic shale [5]

Figure 2: Equivalent stress vs. pressure for Modified Cam Clay model [5]

4 Crook Anisotropic Model

Crook et al [5] draw from the work of Cazacu and Pietruszczak and present
a complete anisotropic model based on extending the isotropic modified Cam
Clay critical state model to allow orthotropic elasticity, an orthotropic pressure
dependent yield surface, and hardening/softening governed by the evolution
of volumetric plastic strain. Triaxial compression tests are used to validate the
model. The model is applied for prediction of equivalent stress q vs. axial/radial
strain. The model is successful in predicting peak values but has difficulty with
the subsequent release. Nevertheless, this model appears to be a good candidate
for a first implementation, given what is attempted in the formulation, which
avoids the complexity of Pietruszczak’s approach. The same model has also
been used by Soreide et al [3] to evaluate borehole stability, using Abaqus to
implement the model. Crook et al realize that for induced anisotropy due to

Computational Geophysics group, LLNL



Computational Geophysics group, LLNL

oriented growth of microcracks, a fabric tensor with an evolution law are needed.
This is not included in their model. See the work of Chen [20] above. The effect
of pore fluid pressure will require using a formulation sensitive to anisotropy, as
described by Carroll [23] and by Chen and Nur [24] . See also the work of Hu
et al [21], above.

Crook et al have adapted the Modified Cam Clay model for shale. Figure 1
shows the modified Cam Clay yield surface, and Figure 2 shows the correspond-
ing representation for equivalent stress vs. pressure, thus resulting in a good
fit with experimental data. The material parameters are calibrated by back-
analysis of uniaxial and triaxial tests. The elastic parameters are determined
from conventional triaxial tests as follows. Young’s modulus normal to bedding
plane and out-of-plane Poisson’s ratio are determined from triaxial tests with
horizontal bedding planes. In-plane Young’s modulus and Poisson’s ratio are
determined from triaxial tests with vertical bedding planes. Out-of-plane shear
modulus is estimated from St. Venant’s formula [14].

The modified Cam Clay yield surface requires four parameters: pre-consolidation
pressure pc, tensile intercept pt, slope of critical state line M , and consolidation
cap shape parameter β. The slope M is determined from the ratio of equivalent
stress to pressure at constant plastic volume from triaxial compression and ex-
tension data. The pressures pc and pt are the positive and negative intercepts
of the projection of the yield surface in pressure-equivalent stress space. From
triaxial data for various void volumes (i.e. plastic volumetric strain), a linear fit
is determined for the variation of pc and pt with plastic volume. The parameter
β is chosen based on previous work with sandstone.

The transverse isotropic yield surface defines the failure criterion and re-
quires three parameters which are determined from unconfined compressive
strengths from triaxial tests with differing bedding plane orientations. The
model is calibrated to fit the experiment at orientations of 0, 45, and 90 de-
grees.

Finally, a characteristic length scale is required in order to reproduce the
correct dependence of strength on specimen size. This parameter is used to
scale the inelastic strain and is typically the grain size of the shale. Crook et al
set this parameter to 0.05 ” in their work on Pierre shale.
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5 Crook model formulation

5.1 Governing equations

For a given strain increment ∆ε and the transversely isotropic elasticity matrix
DE, write the trial stress (including stress at previous time step n and Jaumann
stress flux) as (assume that stress is positive in compression as usual in rock
mechanics):

σ̃ = σn + DE∆ε+ (Wn+1σn − σnWn+1)∆t (2)

Since stress is positive in compression, the stress decomposition into volumetric
pressure p = 1

3 tr(σ) and deviatoric stress S has the form:

σ = p1 + S (3)

so that:

σ̃ = σn + DE∆ε+ (Wn+1Sn − SnWn+1)∆t (4)

Note that the Jaumann stress rate σ̂J is symmetric, i.e.:

σ̂J = WS − SW (5)

σ̂J
T = σ̂J (6)

If the trial stress does not violate the yield criterion given by Equ. 11 (i.e.
Φ ≤ 0), then the new stress is the trial stress. Otherwise, an iterative solution
will be required as described below. Each iterate for the stress at the new time
step n+ 1 takes the form:

σn+1 = σ̃ −DE∆εP (7)

∆εP = (∆λ)N (8)

N =
∂Φ

∂σ
(9)

∆εPv = tr(∆εP ) = ∆λtr(N) (10)

where the yield function Φ(σ, εPv ) is given by:

Φ(σ, εPv ) =
1

M2
(F1(σ))2 +

1

b2
(F2(p, εPv ))2 − a(εPv )2 (11)

where M is the critical state line slope, and b = 1 if p ≥ (pt − a), and b = β
otherwise, β being a consolidation cap parameter.

In the Crook model, the solution state consists of the stress σ, the plas-
tic volumetric strain increment ∆εPv , and the flow multiplier increment (∆λ)
satisfying Equs. 7,10, and 11. These equations are now re-written to apply a
Newton-Raphson iterative solution as given by Equs. (33) and (34) in Crook’s
paper [5], in which the residuals Y1, Y2, Y3 associated respectively with Equs.
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7,10, and 11 are defined. The partial derivatives of these residuals are given
below:

∂Y1

∂σ
= I + (∆λ)DE ∂N

∂σ
(12)

∂Y1

∂(∆εPv )
= (∆λ)DE ∂N

∂(∆εPv )
(13)

∂Y1

∂(∆λ)
= DEN (14)

∂Y2
∂σ

= −(∆λ)
∂(tr(N))

∂σ
(15)

∂Y2
∂(∆εPv )

= 1− (∆λ)
∂(tr(N))

∂(∆εPv )
(16)

∂Y2
∂(∆λ)

= −tr(N) (17)

∂Y3
∂σ

=
1

M2
(2F1

∂F1

∂σ
) +

2

b2
(F2

∂F2

∂σ
) (18)

∂Y3
∂(∆εPv )

=
2

b2
(F2

∂F2

∂(∆εPv )
)− 2a

∂a

∂(∆εPv )
(19)

∂Y3
∂(∆λ)

= 0 (20)
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Figure 3: Transverse Isotropy Standard and Crook Frames

5.2 Elasticity matrix

The elasticity stiffness matrix DE is given by Bower in [25] (p. 84) with respect
to a standard frame, as shown in Figure 3. In this standard frame, the ”1-2”
plane is the isotropic bedding plane, while the ”3” axis is normal to the bedding
plane. Crook uses ”2-3” for the isotropic bedding plane and the ”1” axis normal
to the bedding plane. Furthermore, in writing the stress-strain relation:

σ = DEε (21)

the stress and strain components are represented as vectors, following Voigt
ordering: [11 22 33 23 13 12]. With the standard frame and the Voigt ordering,
the elasticity matrix for transverse isotropy has the structure given by Bower
[25] as:

DE =

(
DE

PS O
O DE

GS

)
(22)

in which the subscript ”P” refers to the part of the matrix relating [11 22 33]
components, the subscript ”G” refers to the part of the matrix relating [23 13
12] components, and the subscript ”S” refers to the standard frame. Within
the standard frame, elastic coefficients associated with the bedding plane will
be labeled with the subscript ”2” (interchangeable with subscript ”1”). The
subscript ”3” will be associated with the transverse axis normal to the bedding
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(isotropic) plane. Then, the components of DE
PS are given by:

(DE
PS)11 = (DE

PS)22 = AE2(1− ν23ν32) (23)

(DE
PS)12 = AE2(ν2 + ν23ν32)) (24)

(DE
PS)13 = (DE

PS)23 = AE2ν32(1 + ν2) (25)

(DE
PS)33 = AE3(1− ν22) (26)

A−1 = (1− ν2 − 2ν23ν32)(1 + ν2) (27)

The other components follow by symmetry. In order for the stiffness matrix to
be symmetric, the following must hold:

ν32
E3

=
ν23
E2

(28)

The components of DE
GS are given by:

(DE
GS)11 = (DE

GS)22 = G3 (29)

(DE
GS)33 = G2 =

E2

2(1 + ν2)
(30)

All other components are zero. G3 is given by St. Venant’s formula [26] as:

1

G3
=

1

E3
+

1

E2
+ 2

ν32
E3

(31)

While the elasticity matrix will be written with respect to the standard
frame and the Voigt order, the coefficients will be interpreted with respect to
the Crook frame, designated with subscript or superscript ”C”, as follows:

E2 = EC
2 (32)

E3 = EC
1 (33)

ν2 = νC23 (34)

ν32 = νC12 (35)

ν23 = νC21 (36)

G2 = GC
2 (37)

G3 = GC
1 (38)

The new form of the elasticity matrix becomes:

DE =

(
DE

PC O
O DE

GC

)
(39)

with components:
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(DE
PC)11 = (DE

PC)22 = AEC
2 (1− νC21νC12) (40)

(DE
PC)12 = AEC

2 (νC23 + νC21ν
C
12)) (41)

(DE
PC)13 = (DE

PC)23 = AEC
2 ν

C
12(1 + νC23) (42)

(DE
PC)33 = AEC

1 (1− (νC23)2) (43)

A−1 = (1− νC23 − 2νC21ν
C
12)(1 + νC23) (44)

(DE
GC)11 = (DE

GC)22 = GC
12 (45)

(DE
GC)33 = GC

23 =
EC

2

2(1 + νC23)
(46)

and the same constraints:

νC12
EC

1

=
νC21
EC

2

(47)

1

GC
12

=
1

EC
1

+
1

EC
2

+ 2
νC12
EC

1

(48)
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5.3 Construction of yield surface

Crook draws on work by Hashagen and Borst [27] who elaborate on the Hoffman
criterion [28]. Hoffman uses a frame with x-y in the isotropic bedding plane and
the z-axis normal to the bedding plane. This maps directly to the standard frame
with ”1-2” corresponding to ”x-y” and ”3” corresponding to ”z”. However,
Hoffman does not use the Voigt order for stress, but instead σ∗ with components
ordered as [11 22 33 12 23 13] in the yield criterion given by Equ. 11, in which:

F1(σ∗) =
g(θ)

2

√
1

2
σ∗TPorthσ

∗ (49)

θ =
1

3
Sin−1(

3
√

3

2

J ′3
(J ′2)3/2

) (50)

g(θ) = [(1 + 1/ξ)− (1− 1/ξ)sin(3θ)] (51)

F2(p, εPv ) = p− pt(εPv ) + a(εPv ) (52)

where:

a(εPv ) =
1

1 + β
(pt(ε

P
v )− pc(εPv )) (53)

(54)

The consolidation pressure is represented with a linear fit:

pc(ε
P
v ) = pc0 + kcε

P
v (55)

The tensile cut-off pressure is represented with a linear fit:

pt(ε
P
v ) = pt0 + ktε

P
v (56)

In the initial version of the code, the yield formulation has been simplified so
that F2 and a have the form:

F2(p) = p (57)

a = −pc0 (58)

and the constant b in Eq. 11 is taken as 1.0. The yield in Eq. 11 thus takes the
form:

Φ(σ) = (
g(S)

2M
)2T (σ) + p2 − (pc0)2 (59)

where T (σ) is given by Eq. 111 and g(S) is given by Eq. 107.
Crook uses the Cam-Clay parameter ξ to fit yield data, with ξ in the range
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0.778 ≤ ξ ≤ 1.0.

Porth =

(
Ωorth O
O Γorth

)
(60)

Ωorth =

 4α4 −2α4 −2α4

−2α4 2(α4 + α5) −2α5

−2α4 −2α5 2(α4 + α5)

 (61)

Γorth =

6α7 0 0
0 4(2α4 + α5) 0
0 0 6α7

 (62)

σ∗TPorthσ
∗ = (Q11 Q22 Q33 Q12 Q23 Q13)


σ11
σ22
σ33
σ12
σ23
σ13

 (63)

where:

Q11 = (σ11 σ22 σ33)

 4α4

−2α4

−2α4

 (64)

Q22 = (σ11 σ22 σ33)

 −2α4

2(α4 + α5)
−2α5

 (65)

Q33 = (σ11 σ22 σ33)

 −2α4

−2α5

2(α4 + α5)

 (66)

Q12 = (σ12 σ23 σ13)

6α7

0
0

 (67)

Q23 = (σ12 σ23 σ13)

 0
4(2α4 + α5)

0

 (68)

Q13 = (σ12 σ23 σ13)

 0
0

6α7

 (69)

Computational Geophysics group, LLNL



Computational Geophysics group, LLNL

6 Alternative scheme for keeping stress state
approximately on yield surface

6.1 Approximate consistency criterion

The solution scheme described by Crook is appropriate to a fully implicit treat-
ment of the governing equations. However, it does require laborious coding
to calculate first and second derivatives of the yield criterion. Here, we will
consider schemes that use only first derivatives and assume explicit integration
with very small time steps. Following Borja [29], this approach should lead to
nested one-dimensional Newton-Raphson iterations, requiring only first deriva-
tives. For this purpose, the requirement that the stress and plastic volumetric
strain remain on the yield surface will be addressed as a first step only by calcu-
lating the increment in the plastic multiplier ∆λ necessary to satisfy consistency,
i.e. from the definition of the yield criterion in Equ. 9. Borja solves rigorously:

Φ(∆λ,σ, εPv ) = 0 (70)

for ∆λ such that the new stress and volumetric plastic strain lie on the updated
yield surface. Given a trial state (σ̃, (εPv )n) violating the yield criterion such
that :

Φ(σ̃, (εPv )n) > 0 (71)

we will first attempt to solve the less rigorous:

Φ(σ̃, (εPv )n) + ∆Φ(∆λ) = 0 (72)

for ∆λ such that:

∆Φ(∆λ) =
∂Φ

∂σ
∆σ +

∂Φ

∂εPv
∆εPv = −Φ(σ̃, (εPv )n) (73)

After the model has been implemented this far, Borja’s more rigorous scheme
will be considered. Other schemes, such as Jeremic’s ”midpoint rule” [30] will
be considered later. So far, it appears that Jeremic’s scheme requires second
order derivatives.

Define:

ζ =
∂Φ

∂εPv
(74)

and using Equ. 9, consistency requires:

NT ∆σ + ζ∆εPv = −Φ(σ̃, (εPv )n) (75)

From Equs. 4 through 10, define:

∆σ = σn+1 − (σn + (Wn+1Sn − SnWn+1)∆t) (76)
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From Equs. 10 and 75:

NT ∆σ + ζ(∆λ)tr(N) = −Φ(σ̃, (εPv )n) (77)

From Equs. 4,7,8:

∆σ = DE(∆ε−∆λN) (78)

Substituting 78 into 77:

NT DE(∆ε−∆λN) + ζ(∆λ)tr(N) = −Φ(σ̃, (εPv )n) (79)

Solving for ∆λ:

∆λ =
NT DE∆ε+ Φ(σ̃, (εPv )n)

NT DEN − ζtr(N)
(80)

6.2 Approximate numerical scheme

Given ∆ε and DE, the gradient N will be evaluated at the trial stress σ̃ , and
the derivative ζ will be evaluated with εPv from the previous cycle. Given ∆λ
from Equ. 93, the full plastic strain increment can then be calculated from Equ.
8 and its volumetric part from Equ. 10 which can be used to advance it:

(εPv )n+1 = (εPv )n + ∆εPv (81)

We can then update the elastic strain increment from:

∆εE = ∆ε−∆εP (82)

and calculate a new estimate for the new stress as:

σn+1 = σn +DE∆εE + (Wn+1Sn − SnWn+1)∆t (83)

At this point we can check and report the error in satisfying the yield crite-
rion by evaluating Equ. 11 at the new stress and plastic volumetric strain.

We now proceed to make this scheme iterative. First, we calculate quanti-
ties which need to be calculated only once for the entire simulation, namely the
elastic matrix DE from Eqs. 40 through 46. Second, at each cycle, we calculate
quantities that need to be calculated only once per cycle, namely: the deforma-
tion gradient D and spin W from Eqs. 126 and 127, the strain increment ∆ε
from Eq. 128, an elastic stress increment ∆σE from:

∆σE = DE∆ε (84)

and σo the sum of the old stress and the Jaumann increment from:

σo = σn + (Wn+1Sn − SnWn+1)∆t (85)
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To make this scheme iterative, proceed as follows: Let r designate the iteration
counter. For r = 0, initialize the new iterate as:

(σn+1)(r) = σ̃ (86)

(εPn+1)(r) = (εP )n (87)

((εPv )n+1)(r) = (εPv )n (88)

(89)

For successive iterations r > 0, initialize the new iterate as:

(σn+1)(r) = (σn+1)(r−1) (90)

(εPn+1)(r) = (εPn+1)(r−1) (91)

((εPv )n+1)(r) = ((εPv )n+1)(r−1) (92)

During any iteration calculate:
1. ζ((εPn+1)(r)) and N((σn+1)(r), (εPn+1)(r)) from Eq. 100 through Eq. 125.

2. The yield h(r) = Φ((σn+1)(r), ((εPv )n+1)(r)) from Eqs. 11, 50 through 52.
3. ∆λ from Eq. 93 and 84 so that:

∆λ =
NT ∆σE + Φ

NT DEN − ζtr(N)
(93)

4. (∆εP )(r+1) = ∆λN
5. (εPn+1)(r+1) = (εP )n + (∆εP )(r+1)

6. (εPv )n+1)(r+1) = (εPv )n + ∆λtr(N)
7. ∆εE = ∆ε− (∆εP )(r+1)

8. (σn+1)(r+1) = σo +DE∆εE

To check for convergence, calculate:

h(r+1) = Φ((σn+1)(r+1), ((εPv )n+1)(r+1)) (94)

6.3 Modified scheme using radial return

The above iterative scheme was found to require more than 50 iterations to
converge. It also showed some instability at high strain rates. Therefore, an
approach using radial return is explored as follows. From Equs. 7 and 8:

σn+1 = σ̃ − (∆λ)DEN (95)

With radial return, a fraction γ of the trial stress is determined so that the yield
vanishes. We consider so far the special case of constant yield strength given in
Equ. 59, so that:

Φ(γσ̃) = 0 (96)

So that, whenever, Φ(σ̃) > 0, we can calculate:

γ = pc0((
g(S̃)

2M
)2T (σ̃) + (p̃)2)(−1/2) (97)
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Then using the predicted reduced stress

σn+1 = γσ̃ (98)

as an estimate of the stress at the end of the time step and evaluating gradients
at that estimate, we find:

∆λ =
(1− γ)NT σ̃

NT DEN
(99)

6.4 Calculation of gradients

From Eqs. 11 and 52, since only F2 depends on εPv :

ζ =
∂Φ

∂εPv
=

2

b2
F2
∂F2

∂εPv
− 2a

∂a

∂εPv
(100)

∂F2

∂εPv
= −p′t(εPv ) + a′(εPv ) (101)

The calculation of the gradient N will be defined with respect to the stress
components arranged in Voigt order, with the single index k ranging from 1 to
6 corresponding to [11 22 33 23 13 12].

Nk =
∂Φ

∂σk
=

2

M2
F1
∂F1

∂σk
+

2

b2
F2
∂F2

∂p

∂p

∂σk
(102)

where, for k = 1, 2, 3:

∂p

∂σk
=

1

3
(103)

and, for k = 4, 5, 6:

∂p

∂σk
= 0 (104)

∂F2

∂p
= 1 (105)

From Eq. 50:

F1(σ) =
g(S)

2

√
1

2
σTPV σ (106)

g(S) = [(1 + 1/ξ)− (1− 1/ξ)(
3
√

3

2

J ′3(S)

(J ′2(S))3/2
)] (107)

Computational Geophysics group, LLNL



Computational Geophysics group, LLNL

where PV is derived from Porth in Eq. 60 by rearranging only the components
of Γorth to follow Voigt order, so that, from Eq. 62:

ΓV =

4(2α4 + α5) 0 0
0 6α7 0
0 0 6α7

 (108)

ΩV = Ωorth (109)

PV =

(
ΩV O
O ΓV

)
(110)

Now define T (σ) as:

T (σ) =
1

2
σTPV σ (111)

which, using Eq. 110, becomes:

T =
1

2
(

3∑
i=1

3∑
j=1

σiΩij
V σ

j +

6∑
i=4

6∑
j=4

σiΓij
V σ

j) (112)

∂F1

∂σm
=

1

2
(
∂g

∂Sk

∂Sk

∂σm

√
T + g

∂
√
T

∂σm
) (113)

∂g

∂Sk
= −(1− 1/ξ)(

3
√

3

2
)((−3/2)J ′3(J ′2)−1/2Sk + (J ′2)−3/2

∂J ′3
∂Sk

) (114)

J ′2 = (1/2)(S2
1 + S2

2 + S2
3) + S2

4 + S2
5 + S2

6 (115)

J ′3 = S1S2S3 + 2S4S5S6 − S1S
2
4 − S2S

2
5 − S3S

2
6 (116)

For k = 1, 2, 3 with (k, l,m) a cyclic permutation of 1, 2, 3:

∂J ′3
∂Sk

= SlSm − (Sk+3)2 (117)

∂J ′3
∂Sk+3

= 2(Sl+3Sm+3 − SkSk+3) (118)

∂
√
T

∂σm
= (1/4)

Rm√
T

(119)

where, for m = 1, 2, 3:

Rm = 2

3∑
i=1

Ωmi
V σi (120)

and for m = 4, 5, 6:

Rm = 2

6∑
j=4

Γmj
V σj (121)
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∂Sij

∂σkl
= (−1/3)δklδij + δikδjl (122)

from which:

Bkm =
∂Sk

∂σm
(123)

is given by:

B =

(
H O
O I

)
(124)

where:

H =

 (2/3) (−1/3) (−1/3)
(−1/3) (2/3) (−1/3)
(−1/3) (−1/3) (2/3)

 (125)
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7 Implementation

The shale model has been implemented in C as a stand-alone software package.
Currently, the model is exercised by specifying the velocity gradient at each
cycle. Material response is output to a file.

7.1 Conventions

Since stress is positive in compression, and the velocity gradient L is usually
positive in tension, we have to calculate the strain increment to be positive in
compression. Therefore:

d = −(1/2)(L+LT ) (126)

w = −(1/2)(L−LT ) (127)

∆ε = d∆t (128)

Furthermore, all symmetric tensor quantities will be represented as a 6-component
vector in Voigt order with the single index k ranging from 1 to 6 corresponding
to [11 22 33 23 13 12].

7.2 Model parameters

7.2.1 Elasticity parameters input once

Young’s modulus normal to bedding plane, EC
1

Young’s modulus within bedding plane, EC
2

Poisson’s ratio within bedding plane, νC23
Poisson’s ratio out-of-plane, νC12

7.2.2 Derived elasticity parameters

Poisson’s ratio νC21 derived using Eq. 47.
Out-of-plane shear modulus GC

12 derived using Eq. 48.

7.2.3 Plasticity parameters input once

Cam-clay parameter (dimensionless), ξ
Cap consolidation parameter (dimensionless), β
Critical state line slope (dimensionless), M
Orthotropic parameters (dimensionless), α1 through α8

Consolidation pressure pc0 (pressure units), Eq. 55.
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8 Code verification

Since the current software is not yet part of a general hydro code allowing to
apply the model on a mesh with boundary conditions and initial conditions, it is
not yet possible to compare model results with experimental data. What can be
done is to verify that the coding is consistent with the formulation documented
above. This has been done for an isotropic test. For an anisotropic test, this has
not been completed yet. However, we will compare an anisotropic calculation
done with and without radial return.

8.1 Isotropic test

First consider a simple isotropic test. A single zone is subject to a constant
compressive uniaxial strain rate d11 = 10 per ms applied for 1000 steps with
time step ∆t = 10−7 ms. For the next 1000 steps, a tensile strain rate d11 = −1
per ms is applied to simulate unloading. Material parameters are chosen as
follows. Both Young’s moduli are taken to be equal to E = 1000 MPa. All
Poisson’s ratios are taken to be zero. In Eq. 59, take the parameter M = 1
and pc0 = 0.1 MPa. The yield is further simplified from Eq. 59, so that the
parameter ξ = 1 in Eq. 52 for isotropic behavior and the matrix parameters
ΩV and ΓV in Eqs. 61 and 62 are chosen so that all components vanish except
for ΩV 11 = 1. The yield criterion then reduces to the form:

φ = (1/2)(σ1)2 + p2 − (pc0)2 (129)

Now proceed through the formulation and verify results calculated in the code,
using a debugger. First calculate when yield first occurs. Until then, the pres-
sure is given by:

p = (1/3)σ1 (130)

With a constant elastic stress increment

Ed11∆t = 10−3 (131)

calculate the number of steps when the yield first becomes positive. Combining
above results, the yield after K cycles (noting that the first cycle is K=0) is
given by:

φ(K) = (11/18)(σ1)2 − (pc0)2 = (11/18)10−3(K + 1)2 − (pc0)2 (132)

giving K=127 when the yield first becomes positive, so that the trial stress σ̃1

is 0.128 MPa, as verified in the code. Next, find the radial return fraction γ for
bringing the stress to the yield surface. Solve

φ(γσ1) = 0 (133)

requiring:

(11/18)(γσ1)2 − (pc0)2 = 0 (134)
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giving γ = 0.999378358 verified in the code, as shown as ”radRetFrac” in Figure
4. The reduced trial stress γσ1 = 0.12792043 is reproduced in Figure 4 as
”strRet1”. Now, in preparation for calculating ∆λ, evaluate the stress gradients
at this reduced trial stress, given by applying Eq. 102 to the simplified yield in
Eq. 129:

N1 =
∂φ

∂σ1
= σ1 + (2/3)p = (11/9)σ1 (135)

N2 =
∂φ

∂σ2
= (2/3)p = (2/9)σ1 (136)

N3 = N2 (137)

Using the reduced stress:

N1 = 0.156347192 (138)

N3 = N2 = 0.028426762 (139)

which all agree with the code as shown in Figure 4. Now proceed with the
calculation of ∆λ from Eq. 99. First the numerator:

(1− γ)NT σ̃ = (1− γ)N1σ̃1 = 1.244057385× 10−5 (140)

which agrees with Figure 4. Then, for the denominator, first form the product
of the elasticity matrix with the gradients. For isotropic material, the elasticity
matrix is reduced a diagonal form with the single Young’s modulus. Multiplying
the modulus by each gradient clearly gives what is shown in Figure 4 as DEN1,
DEN2, DEN3. Finally, forming the dot product of the gradient vector with
the previous result gives the value 26.060606 which agrees with Figure 4. The
ratio of the numerator to the denominator gives ∆λ as 4.77370858× 10−7which
agrees with ”dlambda” as shown in Figure 4. Now proceed with the calculation
of plastic strain increments following Eq. 8, giving:

∆εP1 = ∆λN1 = 7.46356× 10−8 (141)

∆εP2 = ∆λN2 = 1.3570108× 10−8 (142)

∆εP3 = ∆εP2 (143)

all of which agree with ”delplastrn1”,2,3 shown in Figure 5. Now, since the
total strain arises only from the applied strain rate in the 1-direction, the cal-
culation of elastic strain increments will now show tensile reactions in the 2 and
3 directions equal and opposite to the plastic strain increments, thus giving rise
to tensile stresses in the bedding plane. In Figure 7, this explains why the bed-
ding stresses are tensile and become more so during the plastic phase. During
elastic unloading, the plastic strain (see Figure 6) is fixed, so that there is no
further change in the bedding stresses. Figure 8 shows that the yield criterion
is satisfied, remaining close to zero, during the plastic phase, and staying neg-
ative during the elastic loading and unloading phases. One may ask whether
the bedding stresses would be different if Poisson’s ratio were not zero. Figure
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Figure 4: debugger data for isotropic test with zero Poisson ratio

Figure 5: debugger plastic strain data for isotropic test with zero Poisson ratio

9 shows that, with Poisson ratio = 0.3, during the initial elastic loading phase,
the bedding stresses are compressive, but the plastic phase brings on a tensile
trend.

8.2 Anisotropic verification

Next consider an anisotropic test. A single zone is subject to a constant com-
pressive uniaxial strain rate d11 = 10 per ms applied for 12 steps (sufficient to
reach a plastic state) with time step ∆t = 10−6 ms. The goal will be to verify
the initial elastic response cycle and the first plastic response cycle. So far only
the elastic cycle has been completed.
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Figure 6: Volumetric plastic strain for isotropic test with zero Poisson ratio

Figure 7: Stresses for isotropic test with zero Poisson ratio
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Figure 8: Yield for isotropic test with zero Poisson ratio

Figure 9: Stresses for isotropic test with positive Poisson ratio
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8.2.1 Material parameters

EC
1 = 1500 (144)

EC
2 = 2000 (145)

νC23 = 0.3 (146)

νC12 = 0.3 (147)

ξ = 0.8 (148)

M = 0.8 (149)

β = 1.0 (150)

α4 = α5 = 0.5 (151)

α7 = 1.0 (152)

α8 = α9 = 2.0 (153)

pc0 = 0.25 (154)

8.2.2 Elastic cycle

Applying Eqs. 40 through 48 gives:

ν21 = 0.4 (155)

G12 = 638.2978 (156)

G23 = 769.23 (157)

(158)

DE
PC =

(2943.14) (1404.68) (1304.35)
(1404.68) (2943.14) (1304.35)
(1304.35) (1304.35) (2282.61)

 (159)

DE
GC =

638.30 0 0
0 638.30 0
0 0 769.23

 (160)

All of the above values agree with the code as shown in Figure 10.

8.3 Anisotropic calculations with and without radial re-
turn

As mentioned in Section 6.3, the first scheme attempted, which did not use
radial return, required more than 50 iterations to converge. By introducing
radial return, a single iteration produced essentially the same results as the
multi-iterative scheme. This is shown n Figures 11, 12, and 13.
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Figure 10: debugger data for elasticity matrix

Figure 11: Anisotropic stress-11 response with and without radial return
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Figure 12: Anisotropic stress-22 response with and without radial return

Figure 13: Anisotropic stress-33 response with and without radial return
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Figure 14: UCS vs. Porosity [31]

Figure 15: P-wave velocity vs. Porosity [31]

9 Sample properties from literature

Dewhurst et al [31] provide several interesting correlations of shale properties
from a variety of geographical locations. FIgure 14 shows correlation between
unconfined compressive strength and porosity. Figure 15 shows a tight correla-
tion between P-wave velocity and porosity.

Sone et al [32] provide properties of Barnett and Haynesville shale. Figure
16 shows sample mineral composition, frictional coefficients, unconfined com-
pressive strengths. Figure 17 shows Young’s modulus and Poisson’s ratio.

Li et al [33] give shale strength data for Haynesville site. Figure 18 shows
the effect of confining pressure on shale strength.
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Figure 16: Sample mineral composition and mechanical properties [32]

Figure 17: Sample Young’s modulus and Poisson ratio [32]

Figure 18: Effect of confining pressure on shale strength [33]
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